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Dynamics of a charged particle in a linearly polarized traveling electromagnetic wave
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The relativistic motion of a charged particle in a linearly polarized homogeneous electromagnetic wave is
studied using the Hamiltonian formalism. First, a single particle in a linearly polarized traveling wave propa-
gating in a nonmagnetized space is studied. It is shown that the charged particle can have a high average
velocity along the propagation direction of the wave. The same result is derived considering an electromagnetic
wave in a cold electron plasma. The case of a traveling wave propagating along a constant homogeneous
magnetic field is then considered and shown to be nonintegrable. Using canonical transformations, it is shown
that the equations of motion can be derived from an autonomous Hamiltonian and a formal solution is found
for all the variables of the system. Considering that the wave propagates in vacuum and the particle is initially
resonant and at rest, a set of equations is found coupling the energy of the particle and the phase of the wave.
Then, the expression for the energy and the differential equation for the phase allow a solution in terms of
quadratures. Finally, asymptotic solutions for the phase, the energy and consequently all of the variables are
found.
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[. INTRODUCTION tion of the wave. Thus an electromagnetic wave could create
a constant electron current in a plasma. Indeed, considering a
The study of the relativistic dynamics of charged particlescold electron plasma, it is shown that a strong linearly polar-
in electromagnetic fields is of prime importance in plasmaized electromagnetic wave can generate a constant electron
and accelerator physi¢4,2]. We hope to find new ways to current along its direction of propagation when the wave has
accelerate charged particles with microwaves and explore phase velocity very close to the speed of light in vacuum
new processes in the field of laser-matter interaction in order12]. Because of relativistic effects, this can be true when the
to generate strong magnetic fields in laser targets. In particuntensity of the wave is very high and/or when the plasma
lar, it is shown in a simple case how Hamiltonian dynamicshas a very low density compared to the nonrelativistic criti-
can help to predict phenomena which take place in plasmasal density.
interacting with a relativistically strong wave or in low den-  The dynamics of a charged particle in a linearly polarized
sity plasmas interacting with a moderate intensity wave. electromagnetic wave propagating along a constant homoge-
First, the dynamics of one particle in a linearly polarizedneous magnetic field is studied next. This part is rather con-
traveling wave propagating in a nonmagnetized vacuum isiected to the physics of cyclotron accelerators. This problem
considered. Integrability is demonstrated by showing thahas already been explored by Roberts and Buchsbaum in the
this time-dependent Hamiltonian system possesses three inase of a circularly polarized wave. They found a “synchro-
dependent invariants in involution. An extension of the defi-nous” solution in which the particle gains energy indefi-
nition of integrability given for autonomous systems is ap-nitely. This solution occurs because the particle gains energy
plied. In this case no chaos can take place. In this sense, wsarallel to, as well as perpendicular to, the propagation di-
say that Liouville’s theorem on integrability still holds in the rection of the circularly polarized plane wave. The increase
case of time-dependent Hamiltonian systei®s Complete  in perpendicular energy lowers the cyclotron frequency of
integrability is also proven demonstrating that trajectories aré¢he charged particle, while the increase in parallel energy
on a torus and that the state of the system can be expresseddnanges the velocity of the particle, resulting in a Doppler
terms of canonical action-angle variables-8]. The ques- shift to a lower frequency as seen by the particle. In this case,
tion concerning the integrability of the motion of charged the Doppler shift to the lower frequency equals the reduction
particles is not only an academic problem. For instance, ifn the cyclotron frequency and the particle remains “syn-
the case of a practical device like the free-electron laser, aohronously” in cyclotron-resonance conditigrd3]. It is
experiment performed some time ago at the Massachusseg8hown numerically that the synchronous solution still exists
Institute of Technology9] was partly explained by showing when the wave is linearly polariz¢d4]. A canonical trans-
that trajectories of electrons become chaotic under certaiformation[4—8,19 can change this system into an autono-
conditions[10,11. It is shown that the charged particle can mous one with three degrees of freedom. Only two constants,
have a high average velocity along the direction of propagaindependent and in involution, were found. In vacuum, one
of those constants appears in the resonance conditién
] This means that when a particle is initially resonant it re-
*Also at the Laboratoire de Physique des Milieux IosjsEcole  mains resonant forever. Chaotic trajectories were evidenced
Polytechnique, Center National de la Recherche Scientifiqueby performing Poincarenaps. Then by using Hamilton’s
91128 Palaiseau Cedex, France. equations, it is found that the different variables describing
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the system can be formally given in terms of quadratures When considering am-dimensional autonomous system
involving the energy of the charged particle and the phase ahe existence oh constants of motion means that the phase
the wave. When the wave propagates in vacuum and thgpace trajectories are confined to som@mensional mani-
resonance condition is satisfied, an expression defining thield in the 2n-dimensional phase space. The fact that the
energy as a function of the phase of the wave and a differeonstants are in involution is used to show that the
ential equation for the phase are derived. These two equar-dimensional manifold is a toruShe existence of these tori
tions and their formal solution allow us to derive a solutionin phase space provides the means of defining action vari-
for the system in terms of quadratures. Finally, an asymptotiables in an invariant way and allows to integrate the system
solution for the energy, and consequently all of the variable$8]. It can be readily checked th&,, P,, andC are three

of the system, is found. independent constants in involution, i.e., their Poisson brack-
ets[4-8] with each other vanish. As a consequence our sys-
Il. DYNAMICS OF A CHARGED PARTICLE IN AN tem is integrabl¢3]. S _ _
ELECTROMAGNETIC LINEARLY POLARIZED Let us now introduce the following dimensionless vari-
TRAVELING WAVE ables and parameters:
A. Dynamics of one particle only ~ P -
. ) Z=k02, Px,yz X'y’Z, t:wot,
The components of the electromagnetic field are mc
: (6)
Ex=EgsinNwot—koz), Ey=0, E,=0, e H ek
(1) " ¥ mowy
KoEo .
Bx=0, By:_w0 sin(wot —koz), B,=0, The normalized Hamiltonian of the charged particle is
N T E 2 5\124 P2 P2 12
whereE,, By, wg, andk, are constants. The following vec- H={[P,+tacogt—2)]"+Py+P;+1}7% @

tor potential is chosen ) L . -
A canonical transformation is introduce&,P,)—(¢,P,),

given the type-2 generating functi¢A—8|

A= ECOS( wot— koZ)éx- (2) ~ ~
wo Fo(2,P,)=P,2—1). 8

The scalar potential is assumed to vanish.

The Hamiltonian formulation of this problem is derived
by using the Lagrangian procedure where tin®treated as
a parameter entirely distinct from the spatial coordinates.
This Lagrangian formulation is not manifestly Lorentz cova-
riant and is relativistic in the sense that it gives the correct hereC=C/ma
equations[15]. Using this simple procedure, the following where me:

relativistic Hamiltonian for a charged particle in the wave is  This Hamiltonian,P, and P, are three constants of mo-
derived in mks units tion, which are independent and in involution. As a conse-

quence the system is completely integrable.

It remainsP, unchanged and yieldg=2—t. The Hamil-
tonian expressed in terms of the new variables is

H=C=[(P,+acos$)?+P;+P;+1]"-P,, (9

A 2 L, First, we assume thaP,=P,=0 and P,=0 when ¢
H=1|Px+ w—OCOS wot—Ko2) | C™+PyC =0. In this case, the initial Lorentz factop equalsy1+a?,
" the particle is not initially at rest and has the following initial
velocity along thex axis
+P2c2+mct| () Y eond
R a
— i = H Ux0o™ x . (10)
where—e, m, and theP;(i=x,y,z) are respectively the par- 1+ a2

ticle’s charge, its rest mass, and its canonical momentum
components. This system has three degrees of freedorsiill, the particle is at rest on average in thg plane.
P,,Py, are constants. One can notice that The constan€ allows us to calculat®,

dH _oH__@odH _ wo, @ 5 st an
Z" =
dt 4t ko 9z ko =y

As a consequence, a third constant of motion is obtained bypen the velocity of the particle along taexis normalized
integrating this equation to the speed of light is

@0 v, a’sir? ¢
c=H koPZ' ©) V2o e T T 2¥a%(1+cof @) (12)
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Then, for any value o8, averaging ovekp leads to the fol- koEd
lowing average value of, B, =0, B§=75in(w(’)t’—k(’)z’), B,=0. (16
0
(5)~— a® B 31 E 1 12— a’ The anglea can be chosen such that
z m(2+a?) ~\2'2) 22777 (2+ad)]’
(13 u a’
=T (17)
¢ Ji+a’

whereB is the beta function anB the hypergeometric func-

tion. This expression is not very helpful from a practical wherea’ =eEj/mcw). In the considered situation, the Lor-
point of view and one has to deduce features of the MOtioR, - transformation formulas for the field yiel,=TE},

by deriving approximate expressions in interesting cases, P .
First, considering thed is small compared to unity, one finds yvherel“—l/ A bt L UL UL

(6,)~—a2l4. For large values ofa, one obtains(,) incident wave four-vector gives,=I"w,. Letting

~—(v2—1)~—0.41. The good agreement between the nu- N = =
merical solution foro, derived through the exact equations a=ey(EqtEgy)/meawo, (18)

of motion and these approximate solutions has been verifieqlr can be very easily shown that' =a. Consequently, the

Let us now assume th&,= —a, P,=0, andP,=0 when  velocity of the frame ') along thex axis is given, in func-
¢#=0. In this case, the particle is supposed to be initially ation of quantities defined in the laboratory frame, by
rest, but it has a drift velocity along theaxis. One obtains

2

. a = (19
PZ=3(cos¢— 1)2. (14)

Ji+a?’

For the angle of incidence defined by siwU/c and Eq.
The velocity of the particle along theaxis normalized to the (19), the charged particle has a drift velocity in’). When
speed of light is ¢'=0, we can have®,=—a, P/=0, andP,=0. If a is
small enough, we hav(a‘);>~3a’¥/4. As a consequence, in
a’(cos¢p—1)? 15 the laboratory frame, the charged particle has the following
Uz 2+a%(cosp—1)2 (15 average component along thexis (7 ,)~3a?/4.

U a
c

For small values of, the average value of this velocity is B. Electromagnetic wave in a cold electron plasma

(0,)~3a%4. For largea (large values of the electric figld We now show that the propagation of a strong linearly
one has(v,)~1. The numerical solution of the exact equa- polarized electromagnetic wave in a cold electron plasma
tions of motion shows that the approximate solutions forgenerates a constant current along the propagation direction
these average particle velocity along thaxis are appropri- of the wave when the phase velocity of the wave is very
ate for small and large values af respectively. Moreover, close to the speed of light. It will be the case when the
when the electric field has a very high magnitude, as thelasma density is much lower than the nonrelativistic critical
velocity remains close to the speed of light on an average, idlensity or when the wave is relativistically strong.
can only vary very slowly. This is a consequence of the fact To describe the propagation of a relativistically strong
that the particle has a very high energy comparethtd. wave in a cold electron plasma, we start from the Maxwell
One can also consider that the traveling wave is obliquehand Lorentz equations. All the variables entering into these
incident with respect to the axis. The wave vectoky is  equations are assumed not to be functions of space and time
assumed to be in thg-z plane while the electric field is separately, but only of the combination—Vt, wherei is a
perpendicular to this plane. In the laboratory frathg the  constant unit vector and a constant. It means that we look
charged particle is at rest before interacting with the wavefor plane wave solutions traveling in the directidorwith
One can then perform a simplifying Lorentz transformation.speedV. If we denote derivatives with respect to this quan-
A new frame (') is introduced which moves uniformly in tity by a prime, the Maxwell equations can be written in the
thex direction with the velocityJ relative to(L). If « anda’ form
are respectively the angles between the wave vector and the .
z axis in the two frames, the relativistic transformation for- IXE'=VB', (203
mulas for the velocity17] yield a set of two equations be-
tween the two angles which show that there is a particular
frame (L') for which «’=0. The velocity of this frame
along thex axis is defined by sin=U/c. If we choose to
stand in such a frame.(), then electromagnetic field can be i-B"=0, (209
assumed to have the following components

\Y
iXB'I—?E’—,qunv, (20b)

iE=— S
Ex=Egsin(wot’ —koz'), Ey=0, E;=0, ==, (= No), (200
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(i-v—V)p'=—=eE—ev XB, (200 Assuming that the phase velocity is close to the speed of
light, i.e., 8~1, Eq.(270 leads to the fact that the following
wherev andp are, respectively, the velocity and mechanicalquantity is a constant:
momentum of the electrong,is their density, and\, is the
one of ions. C=a?=\1+p>-p,. (28)
By integrating Eq.(203, one obtains
This invariant is the same as one of those found in the case

B=V (i XE). (21)  of one particle in a linearly polarized wave.
As the wave is supposed to be linearly polarized inxthe
ThusE andB are perpendicular. plane, it is considered th@it,=0. Thus, Eqs(27a and(27b)

Equations(20b) and (20d) lead to the following expres- lead to
sion for the electron density:

Px=DoxcOg 0/ @),

_ NoV -
"=Voive (22 p,=0, (29)
Multiplying vectorially Eq.(206 on the left byi and taking ~ Wherepy, is a constant. Assuming thag=0 when#=0, we
into account expressiof21) give have
1 C=a?=\1+p3,. 30
B:E(ixp,)- (23) a pOX ( )

Equations(29) and (30) allow us to find the following ex-
Multiplying Eqg. (20b) vectorially on the left byi leads to pression for the frequency:

B’ = — pen(B2—1) (ixv), (24) wo=wp(B7—1) M1+ pg) M (31)

whereg=V/c. p, can be calculated through EO)
Equations(23) and (24) allow us to derive a propagation o
equation for the electron momentum. Introducing the follow- 5—— Pox SIF(0/ ) @2

ing variables z 2\1+p2,

AP v 2 € No Equation(23) gives
pP=re 0T 7=t v @ om” (25
B,=0,
After some algebra the following equations for the electron
motion are found18]: P Mg _
N , ) By:gzﬁbmsm(ﬁ/a),
Thc 02t P o (268
dr* P -1 p1+pi-p, B,=0. (33
d2|6y L B2 BD, . o6 From Eq.(21) the electric field is calculated
a7 B -1 g1 p-p, mecw,
Ex= e Pox sin( 6/ a),
B TT P+t _0. (250
dr= 17 "BVI+pP—p, E,=0,

Letting 6= w,(B82— 1)~ *?r, these equations becorfit?] E.=0. (34)
d2p 8% Thus, it is consistent to tak@,,=a. The following expres-
d02X A: —=0, (278  sions for the velocityy=p/y and y=1/{1—9? allow ¥

BN1+p=D, =p/\1+p2. Thus, Eq.(32) yields
d?p 3h aZsir’[0/(1+a%)**
H AT (27b) 0,= oitra) ] (35)

- 2+a¥1+cog[ol(1+ad)TH}

+
de” "~ p1+p7-p,

d2 . _ 2( 2_1)"Z
o2 (B TP+ B0

The average velocity obtained is the same as in the single
———=——=0. (2709 particle case wherP, =0, I5y=0, and P,=0 when ¢=0.
BV1+p =D, The values of 5 ,) calculated with Eq(35) and the numeri-
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cal solution of Eqs(27) were compared for different values —~ ! ‘
of B. For a given upper value o, the agreement improves Y :
when B8 goes to unity. L5

Ill. MOTION OF A CHARGED PARTICLE IN A

LINEARLY POLARIZED ELECTROMAGNETIC
TRAVELING WAVE PROPAGATING ALONG A 0.5
CONSTANT HOMOGENEOUS MAGNETIC FIELD

The constant magnetic field, is supposed to be along
the z axis. The traveling wave is assumed to be linearly po- 05
larized and to propagate through a medium with an index of
refractionn. It has a propagation vectdq, parallel toBy.

The fields are given by

EX: EO Sin(wotfkoz), Ey=0, Ez:O, -L5
(36)

_koEg

BX:O, Byf S"‘((l)ot_koz), BZ: Bo.

wWo

_25 1 1 1
-2 -1 0 1
The following vector potential is chosen for the electromag- (a)

netic field

T
)

Y
5k

A=

E
w—o coS wot— Ko2) [+ (Box)2, . (37)
0

The relativistic Hamiltonian for the motion is os

2
c?+ (P, +eByx)?c?

H=

e
P+ —EO cog wot —kg2)
@o —0.5 1
1/2

+P2c?+m?ct (39)

This is a time-dependent system with three degrees of free
dom.P, is a constant of motion as the Hamiltonian does not
depend ory explicitly. It can be easily checked th&t=H s
—(wqlkg)P, is still a constant of motion for this system. (b)
Moreover, combining the equations of Hamilton, it can be
readily found that = P, +eBy is also a constant of motion. FIG. 1. (a) Trajectory of a charged particle initially nonresonant
The following Poisson bracketP,,C]=0, [C,1]=0, and  and at resty,=1, 0,=1.05 at%,=¥,=0 in the X-§ plane.a
[Py,I]=—eBy show that these three constants are not in= 1071, n=1. (b) ¥ component of the charged particle’s position in
involution and one cannot conclude that the problem is intethe same conditions as those (@f.

grable.

New dimensionless variables and a new dimensionlesg, the normalized variables, the constants of motionfye

parameter are now introduced: C=H-P,, and1=P,+Qy/ny. The canonical equations
eB, . nH are solved numerically using a fourth order Runge-Kutta
K=koX, §=kgy, Qo=——", H=ny=—=. (39 method. When the electromagnetic wave propagates in
Mo mc’ vacuum f=1), two different types of trajectories are ob-
o ] tained. When the particle is initially at rest and resonant, it
As it is assumed_ that the electrpmagnetlc wave propagatessbira|s outward in the plane perpendicular to thexis.
through a medium with an index of refraction(n  \ynen it is initially nonresonant and at rest, it spirals outward
=koC/wo), the normalized Hamiltonian expressed in termsang inward(Fig. 1). When the wave propagates in a medium
of the dimensionless variables and parameters is with an index of refraction inferior to unityn<1), the tra-
jectories spiral outward and inward just like in the previous
nonresonant case. This situation corresponds, for instance, to
the case when a low intensity wave with a high frequency
(40 propagates in a plasma.

. . I I L ol . . I
0 100 200 300 400 500 600 700 800 900 E 1000

2 ~
+P2+1

1/2

. Qo
Py+—X%
n

H=n|[P,+acoqt—2)]%+
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0.4

-40 =20 0 20 X 40

FIG. 2. (a) Surface of section plots for some trajectories: 3, 2,=2.001, anch=0.1.(b) Surface of section plots for some trajectories.
a=4.03,Q,=2, andn=0.1. (c) Surface of section plots for some trajectorias:4.03,,=0.1997, anch=0.995.

Then, the canonical transformation defined by EB).is ~onf. Qg
performed. The Hamiltonian becomes y= y( Py+ PRIk

. . , . Qo 2 . vz . an

H=n| (P,+acosg)™+| Py+-——=%| +P;+1] —P,. P,=—sin$(P,+acose),

Y
4D (42)

Note that this expression of the Hamiltonian is the constant b= Pz 1
C expressed in terms of the new variables. The two other Y

constants arePy and | =P+ ({/n)y. The equations of These equations are also solved numerically. Chaos is evi-

Hamilton are denced by performing Poincaneaps. The plané’x—ﬁ with
¢=0 (mod 2m) is chosen to be the Poincasarface of sec-
I'g, _ ( P4 903() tion. Figures 2a)—2(c) show Poincaranaps for several tra-
X Yoo ) jectories. As a consequence the system is not integrable.
Introducing the variables

.on . — .
x=;(Px+acos¢), X=P,+acosq,
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and the complex quanti= Py +iX, the two first equations
of Hamilton[Eqgs.(42)] are equivalent to the following equa-

25 (-

PHYSICAL REVIEW E63 036609

tion:

iy .
Z=—TZ—|a¢sm¢, (44)

which is the equation of a nonlinear oscillator under the ac-
tion of an external force. Formally, the solution of this equa-

tion can be written

Z=Agexp—i[a(t)+8]— g f;q'b(r)[exq—ia)

—exp(—iy)]ldr, (45)
whereA, and § are real constants}= o (t) — o(7) — $(7),
x=o(t)—o(7)+ ¢(7), and

o(f)=QOJ;dm—1(T). (46)

Then

Ao

~ n - an (i.
X= Q0 co:{a(t)+5]—2—Qofo¢(r)[cosﬁ—cosx]dr

~acPye (473

. a (i-
pX:—AOsir[o-(t)+5]—aCOS¢+Ef ¢(7)
0

20 |-

15

600 800 t

400

1000

FIG. 3. y vs time for two values of),. y,=1.a=0.1 andn

This condition implies tha€ is such a=eB,/mw,. This
means that if the particle is initially resonant, it remains reso-
nant all the timeg[15]. It has been checked numerically in
some cases that the synchronous solution is still possible in a
linearly polarized wavdFigs. 3 and 4 In Fig. 3, the com-
parison of the energy of the particle versus time between the
resonant case and a nonresonant one is shown. In Fig. 4, the
values ofy obtained for one value of parametemwhen the
wave is linearly polarized are compared to those obtained
when it is circularly polarized. In terms of the new coordi-
nates, the resonance condition becomes

. Q
X[sind—siny]dr. (470 b+ 7":0. (50)

The quantitiesA, and § are determined, so that, a0, A
AS= 75— PoH—1=D%+Pj and tans=—Po/po (P  Integrating this expression from 0 togives
=p/mc, p is the mechanical momentum of the partjclEhe
subscript 0 appended to variablesand p refers to their /
initial values. This formal solution shows that when the par- . . o

150 Circular polarization - ;

ticle has an initial normalized energy, large compared to a

(Ag>a), the trajectory of the particle is an ellipse in the

— P, plane. Equatior(47b) is now substituted in the equa- 120 -7

tion for Pz [Egs.(42)] to obtain the following nonlinear in-
tegrodifferential equation:

A an
P,=- 7S|n¢

o a (.
AOSIMU(t)+5)—§f0¢(7)

X (sind—siny)dr|. (48)

Let us now consider that the index of the medium is unity o
and that the particle is resonant. In terms of the original

coordinates, the condition for resonance is

(49

90

60 ’
Linear polarization

30

20‘00 40I00 ()Ol()O 80'00 E 10000

FIG. 4. Comparison of the evolution of between the case
when the wave is circularly polarized and the case when it is lin-
early polarized for the same value of parametery,=Q,=1, a

=0.1, andn=1.
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¢(f)+0(f)_ $o=0, (51) The _good a_greer_nent betwgaen the evolutiory(vbr_sus time _

obtained with this expression and the one derived numeri-

where ¢, is the value of¢ att=0. At resonance, Eq49) cally through the exact equations of motion was verified nu-
becomes merically.

X a ~ . ~ a (t- . 2
P,=— —sing(t) AOS|r’[00—¢(t)]+§f ¢(7){sin(t)
vy 0

IV. CONCLUSIONS

, (52) Using the Hamiltonian formalism, we showed that, in a
strong linearly polarized traveling wave, a charged particle
, has an average velocity along its propagation direction. In a
with 00= o+ 6. L cold electron plasma, the wave equations derived by
Assuming the charged particle is initially at rest and thatyypieer and Polovin permit us to show that all the electrons
$o=0 att=0, taking into account that is a constant, EQ. can have this same constant velocity. Thus, there can be a
(52) yields constant current along the wave propagation direction when
a2 the phase velocity of the wave is very close to the speed of
'7=?¢¢ Sir? ¢. (53) light, e.g., when the wave is relativistically strong and/qr
when the plasma density is much lower than the nonrelativ-
istic critical density.
Again with the help of the Hamiltonian formalism, the
a2 problem of relativistic motion of a charged particle in a
y=1+ E[d)z—%(COS 2p+2¢sin2¢—1)], (54)  transverse linearly polarized traveling wave and a constant
homogeneous magnetic field was studied. Only two con-

+sin2¢(m)— ¢(1)]}dr

This equation is integrated between 0 dntb give

while ¢ has to satisfy stants of motion, independent and in involution were found.
When the wave propagates in a vacuum, one of these first

Y 1 integrals appears in the resonance condition. It was verified

¢= 1+a%/8[ p*>—1/2(cos 2p+2¢ sin2¢—1)] numerically that the synchronous solution is still possible in

(55  alinearly polarized wave, as such a wave can be considered
as the sum of two circularly polarized components. The non-
integrability was proven by performing Poincareaps. We

2 a2 a2 a2 R then transformed the system into an autonomous one by a
Zl¢3+ Pl 1+ 1—6+ 1_GCOS 20 | — Esin 26+1t=0. canonical transformation and a formal solution was given for
(56) all the variables in terms of the energy of the particle and of
the phase of the wave. Finally, assuming that the wave

This equation can be solved numerically, and thus a functiopropagates in a vacuum, it was shown that when the particle

¢(E) can be built up. As a consequeneeand all the vari- IS initially resonant and at rest, the system can be simply

ables of the system can be expressed in terms of quadraturexpressed in terms of quadratures allowing, in the case of

Considering thatp is large enough4>1) and a small com- low intensities, a scaling law for the charged particle energy,

pared to unity, the phase can be shown to scale a5  to be derived.

~—2x33q~2%13 By substituting this expression ap

into Eq.(55), the following scaling law for the Lorentz factor
is obtained ACKNOWLEDGMENT

Integrating this equation we obtain
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