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Dynamics of a charged particle in a linearly polarized traveling electromagnetic wave

A. Bourdier and S. Gond*
Commissariat a` l’Énergie Atomique Direction Ile de France, De´partement de Physique The´orique et Applique´e, BP 12,

91680 Bruye´res-le-Chaˆtel, France
~Received 17 April 2000; revised manuscript received 22 September 2000; published 23 February 2001!

The relativistic motion of a charged particle in a linearly polarized homogeneous electromagnetic wave is
studied using the Hamiltonian formalism. First, a single particle in a linearly polarized traveling wave propa-
gating in a nonmagnetized space is studied. It is shown that the charged particle can have a high average
velocity along the propagation direction of the wave. The same result is derived considering an electromagnetic
wave in a cold electron plasma. The case of a traveling wave propagating along a constant homogeneous
magnetic field is then considered and shown to be nonintegrable. Using canonical transformations, it is shown
that the equations of motion can be derived from an autonomous Hamiltonian and a formal solution is found
for all the variables of the system. Considering that the wave propagates in vacuum and the particle is initially
resonant and at rest, a set of equations is found coupling the energy of the particle and the phase of the wave.
Then, the expression for the energy and the differential equation for the phase allow a solution in terms of
quadratures. Finally, asymptotic solutions for the phase, the energy and consequently all of the variables are
found.

DOI: 10.1103/PhysRevE.63.036609 PACS number~s!: 41.20.Jb, 05.45.2a, 41.75.Lx, 03.65.Pm
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I. INTRODUCTION

The study of the relativistic dynamics of charged partic
in electromagnetic fields is of prime importance in plas
and accelerator physics@1,2#. We hope to find new ways to
accelerate charged particles with microwaves and exp
new processes in the field of laser-matter interaction in or
to generate strong magnetic fields in laser targets. In part
lar, it is shown in a simple case how Hamiltonian dynam
can help to predict phenomena which take place in plas
interacting with a relativistically strong wave or in low de
sity plasmas interacting with a moderate intensity wave.

First, the dynamics of one particle in a linearly polariz
traveling wave propagating in a nonmagnetized vacuum
considered. Integrability is demonstrated by showing t
this time-dependent Hamiltonian system possesses thre
dependent invariants in involution. An extension of the de
nition of integrability given for autonomous systems is a
plied. In this case no chaos can take place. In this sense
say that Liouville’s theorem on integrability still holds in th
case of time-dependent Hamiltonian systems@3#. Complete
integrability is also proven demonstrating that trajectories
on a torus and that the state of the system can be express
terms of canonical action-angle variables@4–8#. The ques-
tion concerning the integrability of the motion of charg
particles is not only an academic problem. For instance
the case of a practical device like the free-electron laser
experiment performed some time ago at the Massachus
Institute of Technology@9# was partly explained by showin
that trajectories of electrons become chaotic under cer
conditions@10,11#. It is shown that the charged particle ca
have a high average velocity along the direction of propa
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tion of the wave. Thus an electromagnetic wave could cre
a constant electron current in a plasma. Indeed, consideri
cold electron plasma, it is shown that a strong linearly pol
ized electromagnetic wave can generate a constant elec
current along its direction of propagation when the wave
a phase velocity very close to the speed of light in vacu
@12#. Because of relativistic effects, this can be true when
intensity of the wave is very high and/or when the plas
has a very low density compared to the nonrelativistic cr
cal density.

The dynamics of a charged particle in a linearly polariz
electromagnetic wave propagating along a constant hom
neous magnetic field is studied next. This part is rather c
nected to the physics of cyclotron accelerators. This prob
has already been explored by Roberts and Buchsbaum in
case of a circularly polarized wave. They found a ‘‘synchr
nous’’ solution in which the particle gains energy inde
nitely. This solution occurs because the particle gains ene
parallel to, as well as perpendicular to, the propagation
rection of the circularly polarized plane wave. The increa
in perpendicular energy lowers the cyclotron frequency
the charged particle, while the increase in parallel ene
changes the velocity of the particle, resulting in a Dopp
shift to a lower frequency as seen by the particle. In this ca
the Doppler shift to the lower frequency equals the reduct
in the cyclotron frequency and the particle remains ‘‘sy
chronously’’ in cyclotron-resonance condition@13#. It is
shown numerically that the synchronous solution still exi
when the wave is linearly polarized@14#. A canonical trans-
formation @4–8,15# can change this system into an auton
mous one with three degrees of freedom. Only two consta
independent and in involution, were found. In vacuum, o
of those constants appears in the resonance condition@16#.
This means that when a particle is initially resonant it
mains resonant forever. Chaotic trajectories were eviden
by performing Poincare´ maps. Then by using Hamilton’s
equations, it is found that the different variables describ

e,
©2001 The American Physical Society09-1
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A. BOURDIER AND S. GOND PHYSICAL REVIEW E63 036609
the system can be formally given in terms of quadratu
involving the energy of the charged particle and the phas
the wave. When the wave propagates in vacuum and
resonance condition is satisfied, an expression defining
energy as a function of the phase of the wave and a dif
ential equation for the phase are derived. These two eq
tions and their formal solution allow us to derive a soluti
for the system in terms of quadratures. Finally, an asympt
solution for the energy, and consequently all of the variab
of the system, is found.

II. DYNAMICS OF A CHARGED PARTICLE IN AN
ELECTROMAGNETIC LINEARLY POLARIZED

TRAVELING WAVE

A. Dynamics of one particle only

The components of the electromagnetic field are

Ex5E0 sin~v0t2k0z!, Ey50, Ez50,
~1!

Bx50, By5
k0E0

v0
sin~v0t2k0z!, Bz50,

whereE0 , B0 , v0 , andk0 are constants. The following vec
tor potential is chosen

A5
E0

v0
cos~v0t2k0z!êx . ~2!

The scalar potential is assumed to vanish.
The Hamiltonian formulation of this problem is derive

by using the Lagrangian procedure where timet is treated as
a parameter entirely distinct from the spatial coordinat
This Lagrangian formulation is not manifestly Lorentz cov
riant and is relativistic in the sense that it gives the corr
equations@15#. Using this simple procedure, the followin
relativistic Hamiltonian for a charged particle in the wave
derived in mks units

H5F S Px1
eE0

v0
cos~v0t2k0z! D 2

c21Py
2c2

1Pz
2c21m2c4G1/2

, ~3!

where2e, m, and thePi( i 5x,y,z) are respectively the par
ticle’s charge, its rest mass, and its canonical momen
components. This system has three degrees of freed
Px ,Py , are constants. One can notice that

dH

dt
5

]H

]t
52

v0

k0

]H

]z
5

v0

k0
Ṗz . ~4!

As a consequence, a third constant of motion is obtained
integrating this equation

C5H2
v0

k0
Pz . ~5!
03660
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When considering ann-dimensional autonomous syste
the existence ofn constants of motion means that the pha
space trajectories are confined to somen-dimensional mani-
fold in the 2n-dimensional phase space. The fact that
constants are in involution is used to show that t
n-dimensional manifold is a torus.The existence of these to
in phase space provides the means of defining action v
ables in an invariant way and allows to integrate the syst
@8#. It can be readily checked thatPx , Py , andC are three
independent constants in involution, i.e., their Poisson bra
ets@4–8# with each other vanish. As a consequence our s
tem is integrable@3#.

Let us now introduce the following dimensionless va
ables and parameters:

ẑ5k0z, P̂x,y,z5
Px,y,z

mc
, t̂5v0t,

~6!

Ĥ5g5
H

mc2 , a5
eE0

mcv0
.

The normalized Hamiltonian of the charged particle is

Ĥ5$@ P̂x1a cos~ t̂2 ẑ!#21 P̂y
21 P̂z

211%1/2. ~7!

A canonical transformation is introduced (ẑ,P̂z)→(f,P̂z),
given the type-2 generating function@4–8#

F2~ ẑ,P̂z!5 P̂z~ ẑ2 t̂ !. ~8!

It remains P̂z unchanged and yieldsf5 ẑ2 t̂ . The Hamil-
tonian expressed in terms of the new variables is

Ĥ5Ĉ5@~ P̂x1a cosf!21 P̂y
21 P̂z

211#1/22 P̂z , ~9!

whereĈ5C/mc2.
This Hamiltonian,P̂x and P̂y are three constants of mo

tion, which are independent and in involution. As a con
quence the system is completely integrable.

First, we assume thatP̂x5 P̂y50 and P̂z50 when f
50. In this case, the initial Lorentz factorg0 equalsA11a2,
the particle is not initially at rest and has the following initi
velocity along thex axis

v̂x056
a

A11a2
. ~10!

Still, the particle is at rest on average in thex-y plane.
The constantĈ allows us to calculateP̂z

P̂z5
2a2 sin2 f

2A11a2
. ~11!

Then the velocity of the particle along thez axis normalized
to the speed of light is

v̂z5
vz

c
52

a2 sin2 f

21a2~11cos2 f!
. ~12!
9-2
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DYNAMICS OF A CHARGED PARTICLE IN A . . . PHYSICAL REVIEW E63 036609
Then, for any value ofa, averaging overf leads to the fol-
lowing average value ofv̂z

^v̂z&'2
a2

p~21a2!
BS 3

2
,
1

2DFF1

2
,1;2;2

a2

~21a2!G ,
~13!

whereB is the beta function andF the hypergeometric func
tion. This expression is not very helpful from a practic
point of view and one has to deduce features of the mo
by deriving approximate expressions in interesting cas
First, considering thata is small compared to unity, one find
^v̂z&'2a2/4. For large values ofa, one obtains^v̂z&
'2(&21)'20.41. The good agreement between the
merical solution forv̂z derived through the exact equation
of motion and these approximate solutions has been veri

Let us now assume thatP̂x52a, P̂y50, andP̂z50 when
f50. In this case, the particle is supposed to be initially
rest, but it has a drift velocity along thex axis. One obtains

P̂z5
a2

2
~cosf21!2. ~14!

The velocity of the particle along thez axis normalized to the
speed of light is

v̂z5
a2~cosf21!2

21a2~cosf21!2
. ~15!

For small values ofa, the average value of this velocity i
^v̂z&'3a2/4. For largea ~large values of the electric field!,
one haŝ v̂z&'1. The numerical solution of the exact equ
tions of motion shows that the approximate solutions
these average particle velocity along thez axis are appropri-
ate for small and large values ofa, respectively. Moreover
when the electric field has a very high magnitude, as
velocity remains close to the speed of light on an averag
can only vary very slowly. This is a consequence of the f
that the particle has a very high energy compared tomc2.

One can also consider that the traveling wave is obliqu
incident with respect to thez axis. The wave vectork0 is
assumed to be in thex-z plane while the electric field is
perpendicular to this plane. In the laboratory frame~L!, the
charged particle is at rest before interacting with the wa
One can then perform a simplifying Lorentz transformatio
A new frame (L8) is introduced which moves uniformly in
thex direction with the velocityU relative to~L!. If a anda8
are respectively the angles between the wave vector and
z axis in the two frames, the relativistic transformation fo
mulas for the velocity@17# yield a set of two equations be
tween the two angles which show that there is a particu
frame (L8) for which a850. The velocity of this frame
along thex axis is defined by sina5U/c. If we choose to
stand in such a frame (L8), then electromagnetic field can b
assumed to have the following components

Ex85E08 sin~v08t82k08z8!, Ey850, Ez850,
03660
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Bx850, By85
k08E08

v08
sin~v08t82k08z8!, Bz850. ~16!

The anglea can be chosen such that

U

c
5

a8

A11a82
. ~17!

wherea85eE08/mcv08 . In the considered situation, the Lo
entz transformation formulas for the field yieldE05GE08
where G51/A12U2/c2. The law of transformation of the
incident wave four-vector givesv05Gv08 . Letting

a5eA~E0x
2 1E0z

2 !/mcv0 , ~18!

it can be very easily shown thata85a. Consequently, the
velocity of the frame (L8) along thex axis is given, in func-
tion of quantities defined in the laboratory frame, by

U

c
5

a

A11a2
. ~19!

For the angle of incidence defined by sina5U/c and Eq.
~19!, the charged particle has a drift velocity in (L8). When
f850, we can haveP̂x852a, P̂y850, and P̂z850. If a is
small enough, we havêv̂z8&'3a82/4. As a consequence, i
the laboratory frame, the charged particle has the follow
average component along thez axis ^v̂z&'3a2/4.

B. Electromagnetic wave in a cold electron plasma

We now show that the propagation of a strong linea
polarized electromagnetic wave in a cold electron plas
generates a constant current along the propagation direc
of the wave when the phase velocity of the wave is ve
close to the speed of light. It will be the case when t
plasma density is much lower than the nonrelativistic criti
density or when the wave is relativistically strong.

To describe the propagation of a relativistically stro
wave in a cold electron plasma, we start from the Maxw
and Lorentz equations. All the variables entering into the
equations are assumed not to be functions of space and
separately, but only of the combinationi"r2Vt, wherei is a
constant unit vector andV a constant. It means that we loo
for plane wave solutions traveling in the directioni with
speedV. If we denote derivatives with respect to this qua
tity by a prime, the Maxwell equations can be written in t
form

i3E85VB8, ~20a!

i3B852
V

c2 E82m0env, ~20b!

i•B850, ~20c!

i•E852
e

«0
~n2N0!, ~20d!
9-3
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A. BOURDIER AND S. GOND PHYSICAL REVIEW E63 036609
~ i•v2V!p8525eE2ev3B, ~20e!

wherev andp are, respectively, the velocity and mechanic
momentum of the electrons,n is their density, andN0 is the
one of ions.

By integrating Eq.~20a!, one obtains

B5V21~ i 3E!. ~21!

ThusE andB are perpendicular.
Equations~20b! and ~20d! lead to the following expres

sion for the electron density:

n5
N0V

V2 i•v
. ~22!

Multiplying vectorially Eq.~20e! on the left byi and taking
into account expression~21! give

B5
1

e
~ i 3p8!. ~23!

Multiplying Eq. ~20b! vectorially on the left byi leads to

B852m0en~b221!21~ i3v!, ~24!

whereb5V/c.
Equations~23! and ~24! allow us to derive a propagatio

equation for the electron momentum. Introducing the follo
ing variables

p̂5
p

mc
, v̂5

v
c

, t5t2
i•r

V
, vp

25
e2N0

«0m
. ~25!

After some algebra the following equations for the electr
motion are found@18#:

d2p̂x

dt2 1vp
2 b2

b221

b p̂x

bA11 p̂22 p̂z

50, ~26a!

d2p̂y

dt2 1vp
2 b2

b221

b p̂y

bA11 p̂22 p̂z

50, ~26b!

d2

dt2 ~b p̂z2A11 p̂2!1vp
2 b2p̂z

bA11 p̂22 p̂z

50. ~26c!

Letting u5vp(b221)21/2t, these equations become@12#

d2p̂x

du2 1
b3p̂x

bA11 p̂22 p̂z

50, ~27a!

d2p̂y

du2 1
b3p̂y

bA11 p̂22 p̂z

50, ~27b!

d2

du2 ~b p̂z2A11 p̂2!1
b2~b221! p̂z

bA11 p̂22 p̂z

50. ~27c!
03660
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Assuming that the phase velocity is close to the speed
light, i.e.,b'1, Eq.~27c! leads to the fact that the following
quantity is a constant:

C5a25A11 p̂22 p̂z . ~28!

This invariant is the same as one of those found in the c
of one particle in a linearly polarized wave.

As the wave is supposed to be linearly polarized in thex-y
plane, it is considered thatp̂y50. Thus, Eqs.~27a! and~27b!
lead to

p̂x5 p̂0x cos~u/a!,

p̂y50, ~29!

wherep̂0x is a constant. Assuming thatp̂z50 whenu50, we
have

Ĉ5a25A11 p̂0x
2 . ~30!

Equations~29! and ~30! allow us to find the following ex-
pression for the frequency:

v05vp~b221!21/2~11 p̂0x
2 !21/4. ~31!

p̂z can be calculated through Eq.~30!

p̂z52
p̂0x

2 sin2~u/a!

2A11 p̂0x
2

. ~32!

Equation~23! gives

Bx50,

By5
px8

e
5

mv0

be
p̂0x sin~u/a!,

Bz50. ~33!

From Eq.~21! the electric field is calculated

Ex5
mcv0

e
p̂0x sin~u/a!,

Ey50,

Ez50. ~34!

Thus, it is consistent to takep̂0x5a. The following expres-
sions for the velocityv̂5p̂/g and g51/A12 v̂2 allow v̂
5p̂/A11p̂2. Thus, Eq.~32! yields

v̂z52
a2 sin2@u/~11a2!1/4#

21a2$11cos2@u/~11a2!1/4#%
. ~35!

The average velocity obtained is the same as in the sin
particle case whenP̂x50, P̂y50, and P̂z50 when f50.
The values of̂ v̂z& calculated with Eq.~35! and the numeri-
9-4
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DYNAMICS OF A CHARGED PARTICLE IN A . . . PHYSICAL REVIEW E63 036609
cal solution of Eqs.~27! were compared for different value
of b. For a given upper value ofu, the agreement improve
whenb goes to unity.

III. MOTION OF A CHARGED PARTICLE IN A
LINEARLY POLARIZED ELECTROMAGNETIC

TRAVELING WAVE PROPAGATING ALONG A
CONSTANT HOMOGENEOUS MAGNETIC FIELD

The constant magnetic fieldB0 is supposed to be alon
the z axis. The traveling wave is assumed to be linearly p
larized and to propagate through a medium with an index
refractionn. It has a propagation vectork0 parallel toB0 .
The fields are given by

Ex5E0 sin~v0t2k0z!, Ey50, Ez50,
~36!

Bx50, By5
k0E0

v0
sin~v0t2k0z!, Bz5B0 .

The following vector potential is chosen for the electroma
netic field

A5FE0

v0
cos~v0t2k0z!G êx1~B0x!êy . ~37!

The relativistic Hamiltonian for the motion is

H5F S Px1
eE0

v0
cos~v0t2k0z! D 2

c21~Py1eB0x!2c2

1Pz
2c21m2c4G1/2

. ~38!

This is a time-dependent system with three degrees of f
dom.Py is a constant of motion as the Hamiltonian does
depend ony explicitly. It can be easily checked thatC5H
2(v0 /k0)Pz is still a constant of motion for this system
Moreover, combining the equations of Hamilton, it can
readily found thatI 5Px1eB0y is also a constant of motion
The following Poisson brackets:@Py ,C#50, @C,I #50, and
@Py ,I #52eB0 show that these three constants are not
involution and one cannot conclude that the problem is in
grable.

New dimensionless variables and a new dimension
parameter are now introduced:

x̂5k0x, ŷ5k0y, V05
eB0

mv0
, Ĥ5ng5

nH

mc2 . ~39!

As it is assumed that the electromagnetic wave propag
through a medium with an index of refractionn(n
5k0c/v0), the normalized Hamiltonian expressed in term
of the dimensionless variables and parameters is

Ĥ5nF @ P̂x1a cos~ t̂2 ẑ!#21S P̂y1
V0

n
x̂D 2

1 P̂z
211G1/2

.

~40!
03660
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In the normalized variables, the constants of motion areP̂y ,
Ĉ5Ĥ2 P̂z , and Î 5 P̂x1V0 /nŷ. The canonical equation
are solved numerically using a fourth order Runge-Ku
method. When the electromagnetic wave propagates
vacuum (n51), two different types of trajectories are ob
tained. When the particle is initially at rest and resonant
spirals outward in the plane perpendicular to thez axis.
When it is initially nonresonant and at rest, it spirals outwa
and inward~Fig. 1!. When the wave propagates in a mediu
with an index of refraction inferior to unity (n,1), the tra-
jectories spiral outward and inward just like in the previo
nonresonant case. This situation corresponds, for instanc
the case when a low intensity wave with a high frequen
propagates in a plasma.

FIG. 1. ~a! Trajectory of a charged particle initially nonresona
and at restg051, V051.05 at x̂05 ŷ050 in the x̂- ŷ plane. a
51021, n51. ~b! ŷ component of the charged particle’s position
the same conditions as those of~a!.
9-5
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FIG. 2. ~a! Surface of section plots for some trajectories.a53, V052.001, andn50.1. ~b! Surface of section plots for some trajectorie
a54.03,V052, andn50.1. ~c! Surface of section plots for some trajectories.a54.03,V050.1997, andn50.995.
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Then, the canonical transformation defined by Eq.~8! is
performed. The Hamiltonian becomes

H̄5nF ~ P̂x1a cosf!21S P̂y1
V0

n
x̂D 2

1 P̂z
211G1/2

2 P̂z .

~41!

Note that this expression of the Hamiltonian is the const
Ĉ expressed in terms of the new variables. The two ot
constants areP̂y and Î 5 P̂x1(V0 /n) ŷ. The equations of
Hamilton are

P̂
˙

x52
V0

g S P̂y1
V0

n
x̂D ,

ẋ̂5
n

g
~ P̂x1a cosf!,

P̂
˙

y50,
03660
t
r

ẏ̂5
n

g S P̂y1
V0

n
x̂D ,

P̂
˙

z5
an

g
sinf~ P̂x1a cosf!,

~42!

ḟ5
nP̂z

g
21.

These equations are also solved numerically. Chaos is
denced by performing Poincare´ maps. The planeP̂x2 x̂ with
f50 ~mod 2p! is chosen to be the Poincare´ surface of sec-
tion. Figures 2~a!–2~c! show Poincare´ maps for several tra-
jectories. As a consequence the system is not integrable

Introducing the variables

X̄5 P̂x1a cosf,
~43!

P̄X5 P̂y1
V0

n
x̂,
9-6
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DYNAMICS OF A CHARGED PARTICLE IN A . . . PHYSICAL REVIEW E63 036609
and the complex quantityZ5 P̄X1 iX̄, the two first equations
of Hamilton@Eqs.~42!# are equivalent to the following equa
tion:

Ż52
iV0

g
Z2 iaḟ sinf, ~44!

which is the equation of a nonlinear oscillator under the
tion of an external force. Formally, the solution of this equ
tion can be written

Z5A0 exp2 i @s~ t̂ !1d#2
a

2 E0

t̂
ḟ~t!@exp~2 iq!

2exp~2 ix!#dt, ~45!

whereA0 andd are real constants,q5s( t̂ )2s(t)2f(t),
x5s( t̂ )2s(t)1f(t), and

s~ t̂ !5V0E
0

t̂
dtg21~t!. ~46!

Then

x̂5
A0n

V0
cos@s~ t̂ !1d#2

an

2V0
E

0

t̂
ḟ~t!@cosq2cosx#dt

2
n

V0
P̂y , ~47a!

P̂x52A0 sin@s~ t̂ !1d#2a cosf1
a

2 E0

t̂
ḟ~t!

3@sinq2sinx#dt. ~47b!

The quantitiesA0 and d are determined, so that, att̂50,
A0

25g0
22 p̂z0

2 215 p̂x0
2 1 p̂y0

2 and tand52p̂x0 /p̂y0 ~p̂
5p/mc, p is the mechanical momentum of the particle!. The
subscript 0 appended to variablesg and p refers to their
initial values. This formal solution shows that when the p
ticle has an initial normalized energyg0 large compared to a
(A0@a), the trajectory of the particle is an ellipse in thex̂

2 P̂x plane. Equation~47b! is now substituted in the equa
tion for Ṗz @Eqs.~42!# to obtain the following nonlinear in-
tegrodifferential equation:

Ṗ̂z52
an

g
sinfFA0 sin~s~ t̂ !1d!2

a

2 E0

t̂
ḟ~t!

3~sinq2sinx!dtG . ~48!

Let us now consider that the index of the medium is un
and that the particle is resonant. In terms of the origi
coordinates, the condition for resonance is

v02k0ż2
eB0

mg
50. ~49!
03660
-
-

-

l

This condition implies thatĈ is such asĈ5eB0 /mv0 . This
means that if the particle is initially resonant, it remains re
nant all the time@15#. It has been checked numerically i
some cases that the synchronous solution is still possible
linearly polarized wave~Figs. 3 and 4!. In Fig. 3, the com-
parison of the energy of the particle versus time between
resonant case and a nonresonant one is shown. In Fig. 4
values ofg obtained for one value of parametera when the
wave is linearly polarized are compared to those obtai
when it is circularly polarized. In terms of the new coord
nates, the resonance condition becomes

ḟ1
V0

g
50. ~50!

Integrating this expression from 0 tot̂ gives

FIG. 3. g vs time for two values ofV0 . g051. a50.1 andn
51.

FIG. 4. Comparison of the evolution ofg between the case
when the wave is circularly polarized and the case when it is
early polarized for the same value of parametera. g05V051, a
50.1, andn51.
9-7
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f~ t̂ !1s~ t̂ !2f050, ~51!

wheref0 is the value off at t̂50. At resonance, Eq.~48!
becomes

Ṗ̂z52
a

g
sinf~ t̂ !FA0 sin@u02f~ t̂ !#1

a

2 E0

t̂
ḟ~t!$sinf~ t̂ !

1sin@2f~t!2f~ t̂ !#%dtG , ~52!

with u05f01d.
Assuming the charged particle is initially at rest and th
f050 at t̂50, taking into account thatĈ is a constant, Eq
~52! yields

ġ5
a2

2
ḟf sin2 f. ~53!

This equation is integrated between 0 andt̂ to give

g511
a2

8
@f22 1

2 ~cos 2f12f sin 2f21!#, ~54!

while f has to satisfy

ḟ52
1

11a2/8@f221/2~cos 2f12f sin 2f21!#
.

~55!

Integrating this equation we obtain

a2

24
f31fS 11

a2

16
1

a2

16
cos 2f D2

a2

16
sin 2f1 t̂50.

~56!

This equation can be solved numerically, and thus a func
f( t̂ ) can be built up. As a consequence,g and all the vari-
ables of the system can be expressed in terms of quadrat
Considering thatf is large enough (f@1) and a small com-
pared to unity, the phasef can be shown to scale asf
'22331/3a22/3t̂1/3. By substituting this expression off
into Eq.~55!, the following scaling law for the Lorentz facto
is obtained

g'
32/3

2
a2/3t̂2/3. ~57!
de
r-

03660
t

n

es.

The good agreement between the evolution ofg versus time
obtained with this expression and the one derived num
cally through the exact equations of motion was verified n
merically.

IV. CONCLUSIONS

Using the Hamiltonian formalism, we showed that, in
strong linearly polarized traveling wave, a charged parti
has an average velocity along its propagation direction. I
cold electron plasma, the wave equations derived
Akhiezer and Polovin permit us to show that all the electro
can have this same constant velocity. Thus, there can
constant current along the wave propagation direction w
the phase velocity of the wave is very close to the speed
light, e.g., when the wave is relativistically strong and/
when the plasma density is much lower than the nonrela
istic critical density.

Again with the help of the Hamiltonian formalism, th
problem of relativistic motion of a charged particle in
transverse linearly polarized traveling wave and a cons
homogeneous magnetic field was studied. Only two c
stants of motion, independent and in involution were fou
When the wave propagates in a vacuum, one of these
integrals appears in the resonance condition. It was veri
numerically that the synchronous solution is still possible
a linearly polarized wave, as such a wave can be consid
as the sum of two circularly polarized components. The n
integrability was proven by performing Poincare´ maps. We
then transformed the system into an autonomous one b
canonical transformation and a formal solution was given
all the variables in terms of the energy of the particle and
the phase of the wave. Finally, assuming that the w
propagates in a vacuum, it was shown that when the par
is initially resonant and at rest, the system can be sim
expressed in terms of quadratures allowing, in the case
low intensities, a scaling law for the charged particle ener
to be derived.
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